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ABSTRACT 
My work aims to enable robots to more efectively learn how to 
help people. The way in which people want to be helped by robots 
can vary by task, person, or time, among other factors. Thus, it 
is important that robots can learn to tailor their behavior based 
on a person’s evolving preferences during an interaction. Robots 
typically learn from humans via explicit feedback, such as evaluative 
feedback, preferences, demonstrations, or corrections. However, 
this type of feedback can interrupt the fow of an interaction and 
it places an additional cognitive burden on the human. We know 
that humans “leak” information through their non-verbal behavior 
that gives clues about their internal states during interactions– 
can this information be used to augment how a robot learns from 
humans? My research aims to explore how to incorporate feedback 
that humans provide implicitly into robot learning paradigms. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI; • 
Computing methodologies → Artifcial intelligence. 
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1 INTRODUCTION 
Imagine you are making pizza with a robot and are limited to 
providing evaluative (i.e., “good” versus “bad”) explicit feedback. 
You prefer to bring all of your ingredients to the workstation before 
you start anything else. If the robot starts chopping peppers before 
you are ready, you might consider providing negative feedback. You 
frown, look towards the “bad” button, but ultimately choose not to 
provide the feedback to the robot, since it was not a huge mistake. I 
believe it would lead to a better interaction if the robot were able to 
learn from the implicit feedback you provided, perhaps by asking 
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for explicit feedback in that moment. Thus, my research aims to 
answer the question: How can we leverage implicit human 
feedback so that robots can better learn from explicit human 
feedback in human-robot interactions? 

My goal is to enable robots to more efectively learn how to help 
people in a personalized manner during human-robot interactions. 
As the capabilities of robots continue to increase, humans will want 
to collaborate with robots in a wide range of tasks in a variety of 
settings. Thus, tasks will tend to be less objective and increasingly 
driven by personal preferences [4, 17], making it infeasible to pre-
program robot behaviors. Rather, it is important to enable robots 
to better learn from non-expert human teachers [1]. 

Robots typically learn from humans via explicit feedback, such 
as evaluative feedback [15], preferences [4], demonstrations [11], or 
corrections [12], and recent work has explored how a robot learner 
can combine multiple types of feedback through a common frame-
work [13]. However, relying solely on explicitly provided feedback 
poses challenges in human-robot interactions. For one, depending 
on the interface through which people can provide feedback to a 
robot learner, explicit feedback might not capture the subtlety of the 
person’s preferences or goals. Additionally, explicit feedback can 
take time and attention away from the person’s own tasks during a 
collaboration with a robot and interupt the fow. 

Some recent works have explored how robots can learn from 
implicit human feedback (e.g., [10, 16]). Implicit human feedback 
encompasses a wide range of communicative signals inadvertently 
conveyed during interactions, without the explicit intent to convey 
information to the robot. For this work, I will focus on facial expres-
sions, eye gaze, head position and orientation, and the actions a 
human takes in the task (e.g., moving an item). Interpreting implicit 
feedback presents challenges as reactions can be highly individ-
ualized and can vary across scenarios or cultures [3]. While it is 
challenging to interpret, we know that humans “leak” information 
through their nonverbal behavior that gives clues about how they 
perceive their social encounters [14, 20]. 

While my prior work has investigated explicit and implicit hu-
man feedback individually, I plan to focus my future work on rea-
soning about both explicit and implicit human feedback together 
to enhance robots’ learning capabilities compared to existing ap-
proaches. Both implicit and explicit feedback could help make better 
sense of diferent cues or inputs, compared to considering only one 
type of feedback in isolation. By improving robots’ understanding 
of how people perceive their actions and enabling adaptive behav-
ior, robots would be able to more consistently act in alignment 
with user preferences when learning new skills. Thus, my hope is 
that considering implicit and explicit human feedback together will 
enable more seamless human-robot interactions. 
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2 PRIOR WORK 
As a frst step, I explored participants’ perceptions of an agent’s 
helpfulness. In an exploratory study, we had participants play a 
video game with an interactive agent (co-player) and we studied 
what factors infuenced the perceived helpfulness of the agent in the 
interactions [8]. We found that even when participants were given 
a clear objective goal, they had diferent interpretations of whether 
or not assistive behaviors from an agent were in fact helpful. The 
perceived helpfulness of an agent was more correlated with emo-
tional perceptions (e.g., how annoying the human reported they 
found the agent to be) than game objectives (e.g., how many points 
the co-player scored for the human). Our fndings are in line with 
recent work in Artifcial Intelligence suggesting that in human-AI 
teams, it is not always the most accurate model that ends up being 
the best [2]. It is challenging to know what to optimize for when 
determining a robot’s behavior, so it is important that robots are 
capable of learning to adjust their behavior during interactions. 

To allow for efective learning by robots, which typically relies on 
explicit feedback from humans, it is crucial that humans do, in fact, 
provide enough feedback during human-robot interactions. Thus, 
in prior work, we studied how a robot should remind people to 
provide explicit feedback in fast-paced, cooperative interactions [9]. 
We found that by reminding participants to provide feedback before 
a change in robot behavior, the robot could infuence participants 
to provide feedback more quickly and more frequently. 

While there are many opportunities to improve the explicit feed-
back humans provide in human-robot interactions, I believe there is 
potential in also studying the implicit feedback that humans provide. 
My prior work found that even without explicitly directing partic-
ipants to be expressive, incorporating “free” nonverbal reactions 
improved our ability to predict their preferences between agent 
behaviors [6]. Furthermore, our results suggested that considering 
additional context is important when trying to interpret nonverbal 
human behavior efectively. In other work, we analyzed the data 
collected in two separate human-robot interactions to show that 
interaction history is an important factor that can infuence human 
reactions to robots [7]. I plan to explicitly account for this history 
in future models for interpreting implicit feedback in HRI. 

Challenges with reasoning about implicit human feedback have 
motivated two other prior works. First, we explored methods for 
self-annotation of implicit human feedback, so that we can collect 
informative data [21]. Then, to deal with class imbalance, which 
is often present when analyzing implicit human feedback (i.e., a 
person will have a neutral face the majority of the time and only 
a small number of frames might show a reaction to a robot), we 
introduced a new method for unifying the training and evaluation 
steps in binary classifcation [19]. These works enable us to collect 
better data and to train better models that can reason about implicit 
human feedback in more interesting ways going forward. 

3 FUTURE WORK 
We plan to investigate approaches to enable robots to better learn 
from explicit human feedback by considering implicit human feed-
back. Humans learn through a combination of explicit and implicit 
feedback, and it would be advantageous if robots were also able to 
do so [18]. The “freely provided” information from implicit feedback 

Figure 1: Collaborative cooking setup from prior work [5]. 

increases the amount of information from which a robot can learn, 
and the explicit feedback may help ground difcult to interpret 
implicit feedback. Specifcally, I plan to investigate two research 
questions in a cooking setup (similar to Figure 1): RQ1: How can a 
robot use implicit feedback to decide when to query a human 
for explicit feedback? and RQ2: How can a robot use implicit 
feedback to qualify explicit feedback? 

Regarding RQ1, when to ask for explicit feedback can be a chal-
lenging question. There are times when a person is distracted and 
would not be able to provide good feedback. There are other times 
when it is obvious how an interaction is going and not worth asking 
for feedback. I hypothesize that analyzing implicit human feedback 
could help identify appropriate times to query for explicit feedback. 
One potential approach is to predict a distribution of how people 
may respond to particular robot actions in context and compare 
their actual implicit signals to this distribution. If the human’s ac-
tual actions are very diferent, it may be a good time to pose a query 
for explicit feedback. For example, if a robot brings something to the 
workstation and expected a smile, but the person keeps glancing at 
the recipe, it may be a good time to ask for feedback. 

Regarding RQ2, I propose to use implicit human feedback to 
interpret explicit feedback in a more granular manner. Evaluative 
feedback (“good” vs. “bad”) is one of the simplest ways a human 
teacher can provide explicit feedback to a robot learner. It is al-
ways possible to design a more complicated interface for people to 
provide more granular feedback to the robot, but that opens the 
possibility of confusing users, increasing their cognitive burden, 
or taking time away from other actions. I posit that rather than 
designing interfaces for humans to provide more granular feedback, 
we can leverage “freely provided” implicit feedback to qualify the 
explicit feedback they do provide. I plan to create a framework that 
uses implicit feedback to qualify explicitly provided feedback so 
that robots can learn better and faster. For example, if a person 
provides negative feedback via a button, but also rolls their eyes, 
that should be a stronger feeling than if a person hesitated before 
pressing the negative feedback button. 
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