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ABSTRACT
Humans expect robots to learn from their feedback and adapt to
their preferences. However, there are limitations with how humans
provide feedback to robots, e.g., humans may give less feedback as
interactions progress. Therefore, it would be advantageous if robots
could influence humans to provide more feedback during interac-
tions. We conducted a 2x2 between-subjects user study (𝑁 = 71) to
investigate whether the framing and timing of a robot’s reminder
to provide feedback could influence human interactants. Human-
robot interactions took place in the context of Space Invaders, a
fast-paced and continuous collaborative environment. Our results
suggest that reminders can influence the amount of feedback hu-
mans provide to robots, how participants feel about the robot, and
how they feel about providing feedback during the interaction.

CCS CONCEPTS
• Human-centered computing → Empirical studies in collab-
orative and social computing; Empirical studies in HCI.
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1 INTRODUCTION
Human-Robot Interaction (HRI) has long acknowledged the impor-
tance of creating robots that can adapt to individual preferences
[2, 70], which are often learned through human feedback [21]. Re-
search has investigated robot adaptation in a variety of settings,
such as while collaboratively building a toolbox [54], during tu-
toring sessions [18], or in prehabilitation exercises [80]. Common
types of feedback in robot learning include evaluative feedback
[46], demonstrations [66], corrections [5], and comparisons [61].

Unfortunately, there are shortcomings in how humans naturally
provide feedback [16, 53, 72]. Notably, humans tend to give less
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Figure 1: Experimental setup for our study.

feedback as an interaction progresses [52]. Also, research suggests
that users tend to stop providing feedback once they are satisfied
with an agent’s performance [39]. As robots enter more collabora-
tive interactions, humans will likely provide even less feedback if
they are preoccupied with their own actions.

In situations where humans are not providing enough feedback
during an interaction, a robot could remind them to provide feed-
back. This strategy could work well because robots can influence
human behavior, as demonstrated in a wide range of work (e.g.,
[19, 24, 27, 34, 48, 65]). However, it then becomes essential that the
robot does not annoy the human with reminders, thus making it
important to understand how to make the reminders impactful.

We conducted a study to investigate how robots should remind
humans to give evaluative feedback in fast-paced, cooperative in-
teractions. Participants played a collaborative game with a robot, as
shown in Fig. 1. The novelty of this interaction setup was twofold.
First, the game was a continuous task, more similar to autonomous
driving [62] than more typical turn-based interactions in collab-
orative robotics [22, 55, 68]. Second, the human interactant had
additional objectives other than solely providing feedback to the
robot (as is common in robot learning [4, 12, 13, 36, 47]). Overall,
the interaction was naturalistic from the perspective that both the
human and robot were busy with their own agenda.

Our study focused on investigating two factors that could in-
fluence humans receiving feedback reminders from robots: 1) the
framing of the robot’s utterances (highlighting the robot individ-
ually or its human-robot team); and 2) the timing of reminders
(relative to a situation in which the robot changed its behavior
in the game). Our results suggest that highlighting the individual
robot versus the human-robot team in reminders can influence how
participants feel about the robot and about providing feedback dur-
ing the interaction. Also, the timing of reminders can impact when
participants provide feedback about the robot’s performance. Our
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work provides interesting insights on how to design robots that
learn from humans in realistic, continuous collaboration scenarios.

2 BACKGROUND
Research has investigated robots that request feedback from hu-
mans, including what kind of queries to ask [9, 12, 26], how often
to query a user [10], or how to account for a human’s ability to
provide useful information [8]. Further, Ho et al. [33] studied how
to build mental models of humans to determine how to ask for feed-
back, and Jeon et al. [40] provided a framework to enable agents
to combine multiple types of feedback. This line of work often
investigates turn-based tasks and/or users that are only focused on
providing feedback (e.g., [12, 68]). To complement this research, we
study general reminders for feedback in continuous collaborations.
This is important because the time when a robot asks for feedback
is not necessarily the best time for the human to provide feedback.

To the best of our knowledge, general feedback reminders have
not been explicitly studied before in HRI; nevertheless, prior work
provides insights on trade-offs when requesting feedback. For ex-
ample, robots must be able to ask for feedback without annoying
the human [31] or asking too many questions [79]. Thus, robots
have the difficult task of ensuring requests or reminders for input
are frequent enough to be useful, but not too incessant [7]. One
approach is to identify opportune times for interruptions [1], such
as by modeling user attention [43]. It is also important to try to
maximize the benefit from an interruption when a disruption is
necessary. Thus, another approach is to study the way in which
robots should remind humans to provide feedback most efficiently.

While current work typically studies how to leverage the ways
in which humans naturally communicate when teaching a robot
[15, 25, 42, 71], we are interested in understanding if robots can
influence how much feedback humans provide. Close to our work,
Rogers and Howard [59] found that an agent’s embodiment in-
fluenced how much reward or punishment humans provided in a
financial advisement scenario. Additionally, there is evidence that
people provide more frequent feedback when an agent chooses bad
actions [45]. However, our goal is to elicit more feedback without
harming performance. The next sections describe related work on
two specific aspects of feedback reminders relevant to our study.
Robot Framing in Communication: Robot communicative sig-
nals are able to influence human actions and perceptions of a ro-
bot (e.g., in one-on-one settings [24, 34, 58, 65, 81] and in groups
[19, 23, 27, 48, 67]). One interesting aspect of robot communica-
tion is how the robot frames itself relative to others. For exam-
ple, whether a robot framed itself as competitive or relationship-
oriented impacted how much participants looked at and supported
the robot in a card game [56]. Additionally, how a robot attributed
blame amongst a group influenced how much humans trusted the
robot [29, 41, 76]. Close to our work, Salomons et al. [63] found that
whether the robot referred to itself as a peer or as a teacher affected
how much humans learned over the course of an interaction. This
corpus of work inspired us to investigate:
Research Question 1: Will framing feedback in a reminder as help-
ing the team versus helping the individual robot influence how humans
provide feedback or feel about the interaction?

Timing of Robot Actions: Another important factor of reminders
is timing. Timing can be critical in human-robot communication
[17]. For instance, the time when a robot helps a human can impact
the human’s perception of the robot [6]. The timing of robot actions
can also affect the fluency of human-robot interactions [11, 38].
Consequently, we asked:
Research Question 2: How does the timing of a feedback request
influence when the human provides feedback?

Because prior work has shown that humans not only provide
feedback in response to past actions, but also to guide future be-
havior [44, 71], we investigated the above question in relation to
an important change in robot behavior during interactions.

3 INTERACTION TASK: SPACE INVADERS
Typically, when a robot learns from a human, the human’s only ob-
jective is to teach the robot (e.g., [46, 64, 73]). Also, tasks are usually
turn-based, where the robot takes an action and then waits for the
human to provide feedback [77]. However, everyday interactions
are more fast-paced and involve competing priorities. Thus, we
chose to study feedback reminders in a two-player Space Invaders
game, requiring continuous and fast-paced decision-making and
action. The game was inspired by prior work on ad-hoc cooperation
[49] and unexpected help from a virtual agent [14].

In our version of Space Invaders, a human controlled a purple
spaceship that spawned on the left side of the game screen and the
robot controlled the spaceship that spawned on the right side (Fig.
1). Rows of enemies appeared at the top of the screen and moved
downwards until they were destroyed or reached the bottom of the
screen. The participant and robot had one team score and received
points for destroying enemies. Both players started the game with
four lives and lost a life when they collided with an enemy or a
bullet. The game ended when all enemies were destroyed, when
both players lost all their lives, or when an enemy reached the
bottom of the screen.

The participant used the right and left arrow keys to move within
the bounds of the screen and pressed the spacebar to shoot. They
provided explicit, evaluative feedback to the robot by pressing the
up arrow (positive feedback) or down arrow (negative feedback)
on their keyboard. When participants pressed the up or down ar-
rows, “good job” or “bad job” text appeared on the screen to ensure
participants were aware that their feedback was received.
Robot Gameplay Strategies. Space Invaders allowed us to create
three visually different gameplay strategies for the robot’s space-
ship based on when the spaceship travelled to the left side of the
screen (the participant’s side). The strategies helped familiarize par-
ticipants with the game dynamics and study the effects of timing
on feedback requests.
1) Uncooperative strategy: The robot only destroyed enemies on the
right side of the screen. Because the robot could shoot slightly faster
than the human, the robot always destroyed all of the enemies on its
own side before the participant destroyed the enemies on their side.
Once all of the enemies on the right side were destroyed, the robot
waited for the participant to finish destroying the enemies on the
left side. For games in which the robot utilized the uncooperative
strategy, the robot’s spaceship was dark grey, as shown in Fig. 2(a).



Verbally Soliciting Human Feedback in Continuous Human-Robot Collaboration HRI ’23, March 13–16, 2023, Stockholm, Sweden

���
���

�

���
���

���
�����

���


���
���

����
���

�


	��
����

����
����

����
��
	��

����
�

���
����

����
����

��

���
����

����
���

����
���

���
���

���

���
����

����
���

���
�

���
���

���
���

���
����

����
���

���
�

���
���

���
���

���
����

����
���

���
�

���
����

���
�

�� �� �� ����� ��� ���

���
����

����
����

��

���
����

����
����

��

���
����

����
����

��

���
����

����
����

��

���
����

����
����

��

���� �������������������� ��������������������������� ���������������������������������������������

Figure 2: Experiment timeline. The robot reminded participants to provide feedback about the robot’s performance in games 3
and 4. The first image shows the game instructions that were shown to the participant before each round of Space Invaders
(best viewed in digital form). The other images show the three gameplay strategies for the robot’s spaceship, as described in Sec.
3. The robot’s spaceship was dark grey (a), white (b), or light grey (c). The bottom set of blocks shows the state of the robot.

2) Early-cooperative strategy: The robot went over to the left side of
the game screen to help the participant destroy enemies on three
visits during the game. For games in which the robot utilized this
strategy, the robot’s spaceship was white, as shown in Fig. 2(b).

The first visit to the participant’s side of the screen was central
to our study manipulations. When using the early-cooperative
strategy, the robot emphasized the first visit by announcing “Look
we/I are/am destroying enemies on the left side of the screen!” We
wanted to ensure that participants noticed that the robot moved to
the left side of the screen, exhibiting a new gameplay behavior.
3) Late-cooperative strategy: The robot only went over to the left
side of the game screen to help destroy enemies after all of the
enemies on the right side were destroyed. For games in which the
robot utilized this strategy, the robot’s spaceship was light grey. Fig.
2(c) depicts the late-cooperative strategy.
Implementation. We implemented the game with browser-based
client technologies and a Python server. We used the Robot Oper-
ating System (ROS) [57] to provide game information to the robot.
The supplementary material provides more implementation details.

4 METHOD
We conducted a user study to investigate the effects of how and
when a robot reminded a participant to give feedback about the
robot’s behavior. Participants played six games of Space Invaders
with a Nao robot, as in the timeline of Fig. 2. The participants
were asked to help train the robot to be a good teammate by pro-
viding positive and negative feedback. The robot exhibited three
different gameplay strategies, each for two games: uncooperative,
early-cooperative, and late-cooperative (as described in Sec. 3). The
uncooperative robot strategy served to familiarize participants with
the game while playing with the robot. The early-cooperative strat-
egy was the main focus of our study. The robot only reminded
participants to provide feedback to the robot in these two games.
The late-cooperative strategy was included in our study to evaluate
if effects of our experimental manipulations, which are explained

next, persisted in later interactions. These three gameplay strate-
gies were intended to highlight changes in the robot’s behavior,
rather than being independent variables themselves.

4.1 Study Design
To investigate the research questions outlined in Sec. 2, we designed
a 2x2 between-subject study with Framing (Individual vs. Team)
and Timing (Before vs. After) as independent variables. The robot
reminded the participant to provide feedback once in the third
and fourth games of Space Invaders experienced in the study. The
feedback reminders varied by:
Framing of utterances:We varied how the robot verbally referred
to itself during gameplay using “I” vs. “we” pronouns. With the In-
dividual framing, the robot referred to itself using the first-person,
singular pronoun “I”, e.g., “I’m ready to play” and “Remember to
give feedback so I am a better player!” These utterances referred
to the individual robot and focused the reminder on improving
its gameplay. With the Team framing, the robot referred to itself
using the first-person, plural pronoun “we”, e.g., “We’re ready to
play” and “Remember to give feedback so we are a better team!”
In the Team framing, the reminder was focused on improving the
human-robot team, rather than the individual robot.
Timing of the reminder:We also varied when the robot reminded
the participant to give feedback relative to changing its gameplay
behavior. In particular, the robot’s spaceship began playing Space
Invaders on the right side of the screen. At three different points
during the early-cooperative games, the robot’s spaceship crossed
over to the left side of the screen in order to help the participant.
Our manipulation focused on the first of the robot’s visits to the left
side of the screen in both games 3 and 4. As explained in Sec. 3, the
first crossover was announced with “Look we/I are/am destroying
enemies on the left side of the screen!” With the Before reminder,
the robot reminded the participant to give feedback before its space-
ship crossed over to their side of the screen and announced the new
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behavior. With the After reminder, the robot’s spaceship crossed
over to participant’s side of the screen, announced the new behav-
ior, and then reminded the participant to give feedback once it was
back on the right side of the screen.

The text bubbles and timelines in Fig. 3 illustrate the difference
between the Before and After reminders for the Team framing. See
our supplementary video for examples of experimental conditions.

4.2 Hypotheses
We hypothesized that our independent variables would have an
effect on when participants provided feedback during the collabo-
ration, and on how they reported feeling about the robot and the
interaction. Specifically, in response to RQ1, we hypothesized:
H1a. Humans will give more feedback during the interaction with
the Team framing than with the Individual framing.
H1b. Humans will feel more positive about giving feedback and
about the robot with the Team framing than the Individual framing.
H1a and H1b were motivated by the psychology literature. By
using the “we” pronoun, the robot stressed that the participant
and the robot belonged to the same group. These feelings of group
membership have been found to increase helping behaviors [51]
and perceived responsibility for helping [50]. In our study, the
participant helped the robot by providing feedback so that the robot
could learn to be a better teammate in the future. Further, prior
HRI work found that participants perceived a robot that expressed
group-based emotions as more likeable and trustworthy than a
robot that expressed individual-based emotions [20].
With respect to RQ2, we hypothesized:
H2a. Humans will give more feedback with the Before reminder
than with the After reminder.
H2b. Humans will give feedback more quickly with the After re-
minder than with the Before reminder.
H2a and H2b were motivated by prior work on robots guiding
human attention [35, 69, 82]. Also, humans provide feedback both
in response to past actions and to guide future behavior [44, 71].

4.3 Setup
The experiment was conducted in a small office on a university
campus in the United States. The room contained a table with a
computer screen and a tablet. The participant sat in an office chair
facing the computer screen, and the robot was on the table next to
the participant. The physical setup is illustrated in Fig. 1.

We used the Nao robot by Softbank Robotics for our study. Nao is
a humanoid robot. It is 22.6 inches tall, though it sat for the entirety
of our study. The Nao was fully autonomous and controlled by the
Python SDK for Naoqi on a computer running ROS. The robot spoke
to the participant on set occasions throughout the interaction. We
implemented a basic idling behavior where the Nao moved its head
slightly every eight to fifteen seconds during the Space Invaders
games so that it would seem attentive and engaged.

4.4 Procedure
Fig. 2 summarizes the sequence of events in a study session. After
giving informed consent, participants filled out the pre-interaction

demographics survey, which also included personality data via
the Ten Item Personality Measure (TIPI) [28] and the Berkeley
Expressivity Questionnaire (BEQ) [30].

The experimenter then instructed the participant to enter the
office, sit at the computer, and complete a webcam check to ensure
that the recording was working. Next, the experimenter explained
the setup and controls for the Space Invaders game, including how
to give positive or negative feedback to the robot. The participant
was told the robot was still off, so the robot’s spaceship would not
move or shoot during the tutorial that followed. The experimenter
stayed in the room while the participant completed the tutorial.

After the tutorial, the experimenter asked the participant to help
train the robot and reminded the participant that the robot was
their teammate. The experimenter stated: “The robot already knows
how to play the game, but not how to be a good teammate to you.
You should give the robot feedback so that it learns to play in the way
you like.” Participants were informed that the robot would not be
adjusting its behavior based on feedback provided during the game,
but that feedback would be used to improve robot behaviors in the
future. The experimenter instructed the participant to turn on the
robot, and the robot introduced itself. The participant then began
the first game of Space Invaders with the robot.

The participant played six games of Space Invaders in total. One
game of Space Invaders took on average 96.15 seconds (𝑆𝐸 = 0.69).
The first two games were with the uncooperative strategy, the
middle two games were with the early-cooperative strategy, and
the last two games were with the late-cooperative strategy. After
each pair of games with a specific strategy, the participant answered
a brief set of post-strategy survey questions. Finally, the participant
answered a set of survey questions about the entire interaction. In
order to reduce the likelihood that the participant interacted with
the robot while answering survey questions, the robot stated “I’m
going to take a nap now while you answer some questions.”

At the end of the study, participants were compensated US$10.
The interaction lasted approximately 35 minutes. The protocol was
reviewed by our Institutional Review Board and refined via pilots.

4.5 Dependent Measures
We considered both objective and subjective measures in our study.
For analysis of participant-provided feedback, we analyzed game
logs for up and down button presses. Important game events in-
cluded when the Before and After reminders would have been
and when the robot announced its new behavior. Unless otherwise
noted, survey questions were scored on a 7-point agreement scale
with 1 being “strongly disagree” and 7 being “strongly agree.”
Rate of feedback: We calculated how many times participants
provided feedback with button presses via game logs. To account
for varying game length, we computed feedback signals per minute
(fspm). We analyzed the rate of feedback across entire games, as
well as in ten second windows after important events in games 3
and 4, as depicted by the W measures in Fig. 3.
Elapsed time to feedback:We analyzed the number of seconds
from game events to when the participant next provided feedback
with the up and down keys. Fig. 3 shows the elapsed time measures
(E) we analyzed and how they differ between Timing conditions.
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Figure 3: Robot behavior and related measures in the early-cooperative strategy (games 3 & 4) for the two timings of feedback
(Before & After). Measures include ten-second windows (W) and elapsed time to next feedback press by participant (E) measures
from game events. Italicized labels signify static measures across Timing conditions; non-italicized labels signify measures that
differ across Timing conditions. Example shows Team framing, but measures were the same for Individual framing.

Feedback process: After completing all six games, participants
were asked a series of questions about the process of providing
feedback. They provided free text responses and rated how strongly
they agreed it was difficult or distracting to give feedback, and if
they thought they were able to give the robot helpful feedback.
Perceptions of Robot: After playing two games with each robot
gameplay strategy, participants rated statements about the robot.
The statements included if the robot was helpful, proficient at the
game, or annoying, and if the participant liked the robot’s behavior.

4.6 Participants
Our study had a total of 72 participants, with 18 participants in each
of the four conditions. One participant in the Team-Before condi-
tion was excluded because they continuously provided feedback
in all rounds of Space Invaders and their survey responses were
inconsistent with the provided instructions. Thus, our final partici-
pant pool had 71 total participants. Participants were recruited via
flyers, online postings, and word of mouth. They were required to
be at least 18 years of age, be fluent in English, and have normal or
corrected-to-normal hearing and vision.

Table 1 summarizes participant demographics. On average, par-
ticipants indicated using a computer daily (𝑀 = 1.08, 𝑆𝐷 = .50)
and playing video games between once a week and once a month
(𝑀 = 4.27, 𝑆𝐷 = 1.62). Specific to Space Invaders, 21% reported
playing the game before, 49% reported never having played the
game, and 30% were not sure. The majority of participants (65%)
reported that they interacted with robots less than once a month.

4.7 Manipulation Checks
4.7.1 Framing of utterances. In the final set of survey questions, we
asked participants to rate the frequency that the robot referenced
itself and the team (with 1 being “never” and 7 being “always”). We
used a standard least squares model considering Framing, Timing,
and their interaction as main effects. Participants in the Individual

Table 1: Participant demographics by condition.

Framing Timing N #Males #Females Age (` ∓ 𝜎)

Individual Before 18 8 10 23.78 ∓ 6.11
Individual After 18 9 9 26.50 ∓ 9.70
Team Before 17 8 9 23.82 ∓ 4.57
Team After 18 8 10 23.78 ∓ 3.57

All 71 33 38 24.48 ∓ 6.42

conditions stated that the robot referenced itself significantly more
frequently (𝑀 = 4.61, 𝑆𝐷 = .26) than participants in the Team
conditions (𝑀 = 2.54, 𝑆𝐷 = .26), 𝐹 (1, 67) = 31.56, 𝑝 < .0001. On
the other hand, participants in the Individual conditions stated
that the robot referenced the team significantly less frequently
(𝑀 = 2.78, 𝑆𝐷 = 0.29) than participants in the Team conditions
(𝑀 = 4.80, 𝑆𝐷 = 0.29), 𝐹 (1, 67) = 24.63, 𝑝 < .0001. These results
suggest that our Framing manipulation was effective.

4.7.2 Timing of reminders. After the third and fourth games of
Space Invaders, the survey asked participants to identify when the
robot reminded them to give feedback. In the Before conditions,
68% of participants correctly answered “before the robot said that
it was destroying enemies on the left side of the game screen”, 26%
participants answered incorrectly, and 6% participants answered
that they did not remember the ordering. In the After conditions,
75% participants correctly answered “after the robot said that it was
destroying enemies on the left side of the game screen”, 11% partic-
ipants answered incorrectly, and 14% participants answered that
they did not remember the ordering. This suggests that our Timing
manipulation was perceived effectively by most participants.

Importantly, the difference in the Timing independent variable
was not evident until games 3 and 4. However, an REML analysis
showed that Timing had a significant effect on the rate at which par-
ticipants provided feedback in games 1 and 2 (𝑝 = .003), even though
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this manipulation was not yet evident. This led us to investigate
and identify four covariates through correlation analyses: amount
of feedback provided in the tutorial (𝑟 (142) = .46, 𝑝 < .0001), time
to first button press in first game (𝑟 (142) = .33, 𝑝 < .0001), par-
ticipant agreeableness (𝑟 (142) = −.31, 𝑝 = .0002), and positive
expressivity (𝑟 (142) = .19, 𝑝 = .02). These covariates accounted for
the difference by Timing in games 1 and 2. Therefore, all statistical
analyses in Sec. 5 include these covariates. We also confirmed that
significant differences in the manipulation checks described for
Timing and Framing persisted after the addition of the covariates.

5 RESULTS
This section presents our results based on the measures described
in Sec. 4.5. Unless otherwise noted, we used linear mixed models
estimated with Restricted Maximum Likelihood (REML) analyses
[74] via JMP Pro [37] to statistically examine survey data and partic-
ipant feedback. In these analyses, Framing (Individual or Team) and
Timing (Before or After) were considered as main effects, and partic-
ipant ID was a random effect. When the measures were repeated by
game number or gameplay strategy, we included Game Number or
Gameplay Strategy as a main effect. We also set our selected covari-
ates from Sec. 4.7.2 as fixed effects. We conducted post-hoc Tukey
Honestly Significant Difference (HSD) tests or post-hoc Student’s
t-tests as appropriate.

5.1 Rate of Feedback
First, we present results of analyzing the rate of feedback across all
games and in specific windows of time within games (as in Fig. 3).

5.1.1 All games. Across all six games of Space Invaders, partici-
pants provided an average of 8 feedback signals per minute (fspm)
(𝑀 = 8.02, 𝑆𝐸 = 0.71). This ranged from 0 to 160 fspm, with a me-
dian value of 4.04 fspm. A REML analysis, including Game Number
as a main effect, showed no significant effects by Framing, Tim-
ing, or their interaction. The REML analysis did show a significant
difference by Game Number, 𝐹 (5, 340) = 2.33, 𝑝 = 0.0423, but a
post-hoc Tukey HSD test showed no significant differences. When
considering average feedback across the full length of the games, it
is likely that differences from our manipulations in games 3 and 4
were diluted through the whole interaction. Thus, we also looked
at the rate of feedback in specific windows of time within games.

5.1.2 Specific windows. As discussed in Sec. 4.1, the robot reminded
participants to provide feedback during games 3 and 4. In the ten
seconds after the reminder (WR), the rate of feedback varied signifi-
cantly based on the Timing of the reminder, 𝐹 (1, 63) = 5.71, 𝑝 = .02,
and on the Game Number, 𝐹 (1, 68) = 7.43, 𝑝 = .008. Participants
provided more frequent feedback in WR when the reminder was
Before the robot changed its behavior (𝑀 = 22.03, 𝑆𝐸 = 2.92) than
After (𝑀 = 11.99, 𝑆𝐸 = 2.87), as shown in Fig. 4. Participants also
provided more feedback in Game 3 (𝑀 = 19.78, 𝑆𝐸 = 2.24) than
Game 4 (𝑀 = 14.24, 𝑆𝐸 = 2.24) in this window (WR).

Because the window after the reminder (WR) had the robot’s
spaceship in different parts of the game screen based on the Timing
of the reminder, we evaluated the rate of feedback in other windows
to further investigate the influence of our manipulation. First, we
compared the rate of feedback in the ten seconds after when the
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Figure 4: Rate of feedback in three windows described in Fig.
3 by Timing. Unit is feedback signals per minute (fspm).

Before reminder would have been between the Timing conditions
(WB), and found a significant difference, 𝐹 (1, 63) = 13.38, 𝑝 = .0005.
Participants in the Before conditions provided more frequent feed-
back (𝑀 = 22.27, 𝑆𝐸 = 2.93) during this window than participants
in the After conditions (𝑀 = 6.85, 𝑆𝐸 = 2.88) who did not receive
the reminder at the start of this window (WB). For WB, the actions
of the robot’s spaceship were consistent between Timing condi-
tions, so we can assume that the difference is due to the presence
of the reminder in the Before conditions. Therefore, it is unlikely
that the difference in the rate of feedback that we saw before for
WR was due solely to the actions of the robot’s spaceship in the
game, which differed between the ten seconds following the Before
reminder and the After reminder.

Second, we compared the rate of feedback in the ten seconds
after the first utterance (WU) and found a trend for Timing hav-
ing an effect on the results (p=.06). The participants in the Before
conditions provided feedback at a rate of 21.74 fspm (𝑆𝐸 = 3.11)
while participants in the After conditions had a rate of 13.10 fspm
(𝑆𝐸 = 3.07). This suggests that for WR, the increased amount of
feedback with the Before conditions was not just due to the novelty
of the robot speaking for the first time in the Before conditions.

Had the rate of feedback not been higher in WB with the Before
reminder than without the Before reminder (due to the participant
being in the After conditions), it could be argued that the Before re-
minder happened to occur at a point in the game when participants
were inherently more likely to provide feedback. However, because
participants with the Before reminders provided more feedback
than participants with the After reminders in both WB and WR, we
conclude that the Before reminder increased participants’ feedback.

Timing did not have a significant effect on the rate of feedback
during the second and third visits in the early-cooperative games,
nor during the end of games 5 and 6, when it became evident
that the robot had a new gameplay strategy. The Framing of robot
utterances (Team vs. Individual) had no significant effect on the
rate of feedback provided in any window-based measure.

5.2 Elapsed Time to the Next Feedback
We investigated if there were differences in the elapsed time be-
tween when the robot reminded participants to give feedback and
when participants next provided feedback via the up or down arrow
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keys (ER). An REML analysis revealed a significant difference by
Timing, 𝐹 (1, 63.91) = 4.38, 𝑝 = .04. Participants with the Before
reminder (𝑀 = 3.24, 𝑆𝐸 = 1.03) provided feedback more quickly
than with the After reminder (𝑀 = 6.35, 𝑆𝐸 = 1.02). There were no
other significant effects on the ER measure.

Similar to the secondary analyses for the rate of feedback in
specific windows, we again analyzed other elapsed-time measures
to evaluate the influence of our manipulation. First, we compared
the elapsed time from when the Before reminder would have been
across both conditions (EB). We found that the elapsed time varied
significantly by Timing for the EB measure, 𝐹 (1, 63.74) = 44.29, 𝑝 <

.0001. Participants with the Before reminders (𝑀 = 3.20, 𝑆𝐸 =

.94) provided feedback significantly more quickly when the Before
reminder was uttered than when the Before reminder was not
uttered (because participants instead received the After reminder)
(𝑀 = 12.23, 𝑆𝐸 = .92). This suggests that the reminder did influence
how quickly the participant provided feedback, and the difference
observed for ER was not just due to the position of the robot’s
spaceship, which was the same for both Timings in EB. Additionally,
the interaction between Timing and Game Number had a significant
effect on elapsed time to feedback in EB, 𝐹 (1, 67.91) = 8.54, 𝑝 = .005.
The post-hoc test showed that Game 3 (𝑀 = 2.56, 𝑆𝐸 = 1.16) and
Game 4 (𝑀 = 3.84, 𝑆𝐸 = 1.18) with the Before reminder led to faster
feedback than Game 4 with the After reminder (𝑀 = 10.07, 𝑆𝐸 =

1.14). Also, these three combinations (Before-3, Before-4, and After-
4) had significantly faster feedback than Game 3 (𝑀 = 14.39, 𝑆𝐸 =

1.14) with the After reminder.
Second, because the After reminder was the second utterance

of the manipulation, we also conducted an REML analysis on the
elapsed time between the robot’s first utterance of the manipulation
in games 3 and 4 and when the participant next provided feedback
(EU). Again, there was a significant difference in the elapsed time
by Timing, 𝐹 (1, 63.76) = 13.93, 𝑝 = .0004. Participants with the
Before reminders (𝑀 = 3.33, 𝑆𝐸 = .84) provided feedback more
quickly after the first utterance than with the After reminders
(𝑀 = 7.81, 𝑆𝐸 = .82). This result suggests that it was not only that
participants responded to the robot saying something in the middle
of the game, but that the reminder itself was important. There were
no other significant differences.

5.3 Reasons for Providing Feedback
Participants predominantly provided positive feedback to the robot:
83.5% of all participant feedback across all six rounds of Space
Invaders was positive. Participants were asked to select all reasons
that they gave feedback. Reasons from most to least commonly
selected were: “when the robot was on the left side of the screen”
(87%), “when the robot was trying to help” (83%), “when the robot
was on the right side of the game screen” (70%), “when the robot
was not helping” (56%), “when the robot was not being efficient”
(35%), “randomly” (30%), and “when the robot lost a life” (11%).
Additionally, ten participants (14%) selected “Other”. When asked
to elaborate on why they chose “Other”, nine of the ten participants
provided another rationale for giving positive feedback. Of the nine,
four participants said they provided feedback when the robot was
performing better than they were. For example, P124 wrote “I would
look over and see the robot had done a better job of destroying enemies
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Figure 5: Participant agreement with “I liked the behavior
of the robot in the game” (Liked), “The robot was proficient
at the game” (Proficient) and “The robot was annoying” (An-
noying) on a 7-point responding format.

than I did, and I gave it positive feedback based off of that.” The
other five positive reasons were not relative to the participant, but
just that the robot was doing well in general, e.g., “when I saw it
was shooting with high frequency” (P105) or “whenever it finished
clearing its side” (P186). The one negative reason that was provided
was “when the robot was on the left side of the screen but there were
still enemies on the right side of the screen” (P102).

5.4 Perceptions of the Feedback Process
We next analyzed post-interaction survey questions about the feed-
back process. The REML analysis showed that how strongly partic-
ipants agreed that the feedback they provided was helpful varied
significantly by Framing, 𝐹 (1, 63) = 6.42, 𝑝 = .01. Participants in
the Team conditions more strongly agreed (𝑀 = 5.72, 𝑆𝐸 = .24)
that they were able to give helpful feedback to the robot than par-
ticipants in the Individual conditions (𝑀 = 4.87, 𝑆𝐸 = .23). Neither
Timing nor the interaction between Framing and Timing had a
significant effect on this measure. There were no significant dif-
ferences by Framing, Timing, or their interaction on how strongly
participants agreed that giving feedback was distracting or difficult.

5.5 Perceptions of the Robot
We conducted REML analyses for the post-strategy surveymeasures
about participant perceptions of the robot. Because survey ques-
tions were after two games with a specific strategy, robot Gameplay
Strategy was included as a main effect. However, given that it is
not the focus of this paper, we do not include results for differences
by robot Gameplay Strategy due to space constraints.

An REML analysis showed a significant difference by Framing in
how much participants liked the behavior of the robot in the game,
𝐹 (1, 63) = 4.74, 𝑝 = .03. Participants that experienced the Team
framing (𝑀 = 5.96, 𝑆𝐸 = .15) liked the robot more than those that
experienced the Individual framing (𝑀 = 5.47, 𝑆𝐸 = .15). The analy-
sis also showed significant differences by Framing in how proficient
(𝐹 (1, 63) = 16.11, 𝑝 = .0002) and annoying (𝐹 (1, 63) = 7.57, 𝑝 =

.008) the participants found the robot. The Team framing led to the
robot being perceived as more proficient (𝑀 = 6.77, 𝑆𝐸 = .07) and
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less annoying (𝑀 = 1.82, 𝑆𝐸 = .15) than the Individual framing
(proficiency:𝑀 = 6.35, 𝑆𝐸 = .07; annoyance:𝑀 = 2.40, 𝑆𝐸 = .15).

We found no other significant effects of Framing, Timing, or
their interaction on perceptions of the robot.

6 DISCUSSION
Our first hypothesis (H1a) was not supported. The framing of ut-
terances did not significantly impact the rate of feedback within
games nor in the relevant windows of time that we analyzed.

H1b was supported as the participants felt more positively about
giving feedback and about the robot when the reminder was framed
as helping the team compared to when it was framed as helping the
individual robot. Participants that experienced the Team framing
more strongly agreed that they were able to give helpful feedback
(Sec. 5.4). This could be advantageous for future human-robot in-
teractions because individuals may continue to provide feedback
throughout longer interactions if they feel that the feedback they
are providing is worthwhile. The Team framing also made the robot
seem more proficient and less annoying, and participants reported
that they liked the robot’s behavior more compared to the Indi-
vidual framing (Sec. 5.5). While the Framing manipulation did not
appear to influence participant actions, it did influence how partici-
pants felt about the interaction. Our results reinforce prior work
that shows that even a difference of just a few words in how a robot
communicates with users matters [20, 63].

We found partial support for H2a, which stated that participants
with Before reminders would provide more feedback. While the
difference was not significant when we considered full games, par-
ticipants did provide more feedback in the ten seconds after the
Before reminder than in the ten seconds following the After re-
minder. We suspect this difference was because the robot guided
the human’s attention to its new behavior with the Before reminder,
whereas there was not a novel behavior following the reminder in
the After conditions. Based on the results in Sec. 5.1, we are led
to believe that a reminder before the robot changes its behavior is
more fruitful than a reminder after the change in behavior.

We did not find support for H2b, but instead found evidence
that suggests a reverse effect. We hypothesized that participants
would give feedback more quickly when the reminder was after
the change in behavior. Instead, we found that participants more
quickly provided feedback when the reminder was before it was
apparent the robot was trying a new gameplay behavior. Whether
the goal is to increase the amount of feedback provided or to de-
crease the elapsed time until the robot receives feedback, the Before
reminder appears advantageous based on our study results.

Importantly, participants provided less feedback in the ten sec-
onds after the reminder to give feedback in Game 4 than in Game
3 (Sec. 5.1). This difference highlights the importance of novelty
and underscores the importance of understanding how feedback
reminders in HRI can be most effective, because it appears that
reminders become less meaningful as they are repeated (as in [52]).

Our findings are limited to evaluative feedback.We chose to focus
on this type feedback because it required minimal interruption to
the participant’s own task. However, we posit that our results will
transfer to other types of feedback, but would need to study this
in future work. In this regard, we suspect that with other kinds of

feedback (like corrections), our results may even be stronger than
in this study because humans would likely have to focus more on
the process of providing feedback for these other types.

7 LIMITATIONS AND FUTURE DIRECTIONS
Our work was limited in several ways, which highlight opportuni-
ties for further research. First, our study was conducted in the con-
text of a Space Invaders game. Future research should investigate if
the proposed methods for eliciting human feedback are generaliz-
able to other interactions, especially tasks involving more physical
manipulation by the robot, e.g., robots learning how to cook with
users [60, 78], build physical objects [3, 32], or deliver parts in
assembly lines [75]. Second, it is possible that participants were
less sensitive to the robot’s behavior because its actions changed
a virtual environment, not the physical state of the world, even
though the robot was situated next to them. Third, in our study,
the robot already knew how to play Space Invaders, so participant
feedback was for the purpose of fine-tuning collaborative behav-
iors. It would be interesting to investigate how feedback reminders
influence participants when the robot has no prior knowledge of
how to perform a task. Another limitation is that the algorithm
that determined when a robot reminded participants to provide
feedback was based on heuristics and fixed. Future work should
investigate how to adapt the framing and timing of reminders to
the behavior of users. Finally, our work studied the quantity of
feedback provided, but it will be important for future work to study
the quality of the feedback provided by humans.

8 CONCLUSION
We investigated the effect of general reminders for humans to
provide feedback about a robot’s behavior during continuous, col-
laborative interactions with a robot. Our experimental setup was
valuable for investigating human feedback in HRI because while
providing feedback, participants were also engaged in the Space
Invaders task, which required continuous attention and action on
their part. We found that by reminding participants to provide
feedback before the Nao tried a new gameplay behavior, the robot
could influence participants to provide feedback more quickly and
more frequently. Although framing the feedback as helping the
team during the reminder did not influence the amount of feedback
provided by participants in our study, it did result in more positive
feelings about the robot and the process of providing feedback. We
hope that our findings encourage the HRI community to incorpo-
rate verbal reminders for feedback into interactions where a robot
is learning from humans how to improve its behavior.
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