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Abstract—It is important for intelligent robots to be able to
interpret human signals that provide context about how an inter-
action is going. We posit that including multiple facets of context,
both situational and user-specific, in user models will improve a
robot’s understanding of the context of their interactions. This
position is supported by results from an exploratory study where
humans interacted with an agent in a video game. As part of this
work, we built contextual perception models that reasoned about
nonverbal human reactions to prosocial assistance from the au-
tonomous agent. Interestingly, our results showed the importance
of contextualizing model predictions based on multiple factors.
Future work will further examine the importance of the inclusion
of the context of context, or context2, in perception models to
make intelligent predictions about nonverbal reactions through
richer utilization of our existing data. Additionally, we plan on
extending our study to situated human-robot interactions.

Index Terms—human-robot interaction; affective computing;
context

I. INTRODUCTION

As assistive robots become more prevalent in everyday
life, it is important that they understand how they are being
perceived by the people they interact with and can adapt
their behavior accordingly. A human’s internal state is not
directly observable, but implicit feedback can provide hints
about what a user may be thinking or feeling. Importantly,
implicit feedback is provided “freely” during interactions, so
it presents an opportunity to enrich a robot’s observations at no
additional burden to the user from an interaction perspective
[1]. Implicit feedback encompasses a variety of user behaviors
from which it is possible to infer feedback, ranging from facial
expressions (e.g., [2]) to tone of voice (e.g., [3]).

Different definitions of context are used across, and even
within, research areas. Examples include: the who-what-
where-when of interactions [4]; global features extracted from
visual images [5]; and information such as physical location,
time of day, observable behaviors, and the social event taking
place in an interaction [6]. Inspired by the definition of context
awareness as the ability of an agent to perceive and react to
aspects of their environment [7], we consider a broad definition
of context that includes any element providing information
about the environment in which an agent is situated. For ex-
ample, we consider nonverbal human reactions, demographics

and personality traits of users, and activity statistics to all be
contextual factors relevant to human-robot interaction.

This paper posits that considering the context of context, or
context2, of human-robot interactions can help create more
adaptive social robots. For example, consider a robot that
assists a user who is preparing a meal. If the robot perceives a
smile after it has just handed the user a spoon, it could signal
that the user is happy with the assistance the robot is providing.
On the other hand, if the robot has not recently provided any
help but is just watching the user, a similar smile could signal
the user feels awkward about being watched. In both scenarios,
the perceived smile provides contextual information to the
robot, but considering additional context about the interaction
could allow the robot to better interpret the smile, and thus
better reason about the internal state of the user.

More generally, this paper argues in favor of regarding
context as a complex and multi-faceted construct. A lot of
potential information could be lost by focusing on individual
aspects. Rather, in the Human-Robot Interaction community,
we should consider context as a collection of different factors.
Each factor has the potential to help us better understand both
other contextual elements and the situation in which the robot
operates.

II. RELATED WORK

A. Helpfulness and Prosocial Help by Autonomous Agents

Researchers have studied what makes an autonomous agent
a good collaborator. With respect to assistance, the timing of
helping actions is important [8]. Other work has highlighted
the nuance of understanding how assistance is received. For
example, prior work has found that actions need not only be
objectively useful but also perceived to be useful [9]. Other
work has found that helping actions taken by an agent may
not necessarily be perceived as assistance [10]. Additional
work has highlighted the importance of reasoning about multi-
dimensional aspects of teamwork, such as displaying effort, for
agents to be considered helpful [11].

Understanding whether an autonomous agent is helpful
becomes even more difficult when humans are not primed
for a specific type of cooperation. This type of assistance
is known as prosocial assistance: when one agent takes an



action that benefits others despite some personal cost [12].
The question of how to create social, computational agents
that are capable of rendering prosocial actions has inspired
significant work within artificial intelligence [13], [14]. Prior
work has had success with leveraging task-specific variables to
encourage prosocial behavior, but has struggled to understand
more individual indicators [15]. We suspect that one avenue
to gain insight into these individual indicators is by analyzing
nonverbal human reactions.

B. Implicit Feedback

There has been significant effort within social signal pro-
cessing to computationally model and understand nonverbal
human behavior [4]. For example, researchers have used
computational models of nonverbal human behavior to adapt
the behavior of in-home devices [16]. Recently, there has been
evidence of successfully adapting the behavior of agents via
reinforcement learning with this kind of implicit feedback [2],
though participants were only observing the agent, rather than
interacting with it. Similarly, the inclusion of social cues via
facial expressions has been shown to improve a generative
deep learning model [17].

There has been recent discourse about the limitations of
interpreting facial expressions [18]. For example, emotions are
represented differently across cultures and context [19]. We
believe that including context, in the sense of activity statistics
as well as demographics and personality, will improve the
quality of predictions made about nonverbal reactions in
human-robot interactions.

C. Context in Human Robot Interaction

Context has been shown to be an integral part of un-
derstanding human-robot interactions [20]. For example, the
definition of trust in human-robot interactions may hinge on
the context of the interaction [21]. Context can also improve
a robot’s ability to understand user attention [22] or solve
perception tasks [6]. Related to our position, interactional
context has been shown to improve classification of human
gestures compared to kinematics alone [23]. Additionally,
researchers have illustrated the success of leveraging additional
contextual information from images in emotion recognition
[24]. We see an opportunity to enrich the notion of context to
include additional contextual information, such as personality
traits of a user and activity statistics of an interaction, in
order to better understand nonverbal human reactions to an
autonomous agent.

III. EXPLORATORY STUDY

Our position is motivated by previous, under-review work
in which we conducted an exploratory online study with
194 participants to explore how people perceive and react
to prosocial help from an autonomous agent in a multiplayer
version of the Space Invaders game. This section gives a brief
overview of our previous work to motivate our position.

In our Space Invaders game, each participant controlled a
spaceship that spawned on the left side of the game screen. The

Webcam image

(a) Experimental setup: The participants' faces were recorded while 
playing the Space Invaders game in our online study.

(b) The participants experienced two types of helping behaviors by the 
co-player (orange ship) in the study.
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Fig. 1. We conducted a study to investigate how participants perceived a
prosocial agent in a multi-player Space Invaders game. We controlled for the
agent’s helping behavior (early-cooperative vs. late-cooperative).

autonomous agent, or “co-player”, controlled the spaceship
that spawned on the right side of the game screen. Both players
received points for the enemies destroyed on the side on which
they were spawned. Our experimental setup and our version
of the Space Invaders game can be seen in Figure 1.

In our study, the participant experienced two different
behaviors from the co-player. In one game, the co-player
exhibited an early-cooperative behavior, in which the agent
went over to the participant’s side of the game screen and
helped destroy enemies on two separate occasions before it
had finished destroying its own enemies on the right side of
the game screen. In the other game, the co-player exhibited a
late-cooperative behavior. This agent only went over to the left
side of the game screen to help destroy enemies after it had
destroyed all of its own enemies on the right side of the game
screen. Figure 1(b) illustrates examples of the two different
helping behaviors. By destroying enemies on the left side of
the game screen, the co-player was helping the participant
achieve their objective of scoring points for enemies destroyed
on their side. However, we found that helping to destroy left
enemies did not necessarily translate to helpfulness ratings
nor the participant reporting that they liked or preferred a
particular behavior.

Our preliminary results suggested there may not be universal
truths when it comes to understanding how an agent’s help
will be received, nor what actions we can assume humans will
interpret as helpful. Rather, it is important to understand the



Fig. 2. Best F1-Scores for each combination of information inputs. F1-Score was calculated over confusion matrix derived from individual predictions of
194 folds of LOOCV. The dots on far-left indicate which information was considered in the model. Machine learning algorithms (Support Vector Machine
(SVM), Random Forest (RF), Multi-Layer Perceptron (MLP), K-Nearest Neighbors (KNN)) are ordered left-to-right in decreasing order of highest F1-Score.
The darkest bar highlights the highest F1-Score for each algorithm. Dotted lines separate input combinations into: no additional interaction context, one type
of additional interaction context, two types of additional interaction context, and all three types of additional interaction context.

individual and to adapt to what is influencing their perception
of the interaction and the type of behavior that they prefer.

Because we anticipated there may be nuance in how proso-
cial actions would be perceived, we were also interested in
analyzing implicit feedback in the form of nonverbal reactions.
To this end, we recorded the participants’ upper bodies via
their webcam while they played the two games of Space
Invaders. In particular, we explored if implicit feedback and
other context could be leveraged to understand user pref-
erences for an agent’s helping behaviors without explicitly
biasing humans towards expressivity. To investigate this, we
considered the participants’ stated preferences between the two
helping behaviors as a multi-class classification problem with
targets in the set: {Early, Late, No Preference}.

We explored incorporating additional contextual informa-
tion into classification models. The base input data consisted of
features derived from post-game survey responses. We added
additional context to the survey data (S) via combinations of
three types of contextual information: 1) nonverbal reaction
data (N) via various summary statistics of facial action unit
and body motion features extracted via OpenFace 2.0 [25],
2) participant-provided demographic data (D), and 3) game
context (G) via game logs. We suspected possible information
leakage from the survey responses and hypothesized that
additional contextual information would improve our ability
to predict user preferences over agent behavior.

Our results support the idea that considering multiple facets
of context allows an agent to better reason about the internal
state of a user. In Figure 2, the highest F1-Score for each
algorithm included nonverbal reaction data and at least one
other kind of additional context. Notably, including all three
kinds of additional contextual information did not always
result in the highest F1-Score (e.g., SVM and KNN), so one
cannot take for granted that including more features will result
in higher performance. Rather, it is important to further explore

how to best incorporate the context of context when reasoning
about internal human states.

IV. FUTURE DIRECTIONS

Our preliminary results align with recent research in so-
cial psychology that contests the assumption that emotions
are recognized and communicated universally with particular
facial expressions and argues for the importance of considering
context when analyzing human behavior (e.g., [18], [19]). We
think it is imperative to continue to study the importance
of context for interpreting nonverbal human reactions to au-
tonomous, interactive behavior. In the future, we plan to ex-
plore richer utilization of the data from our exploratory study,
and will extend our analysis to human-robot interactions.

One future direction is to enable robots to use implicit
feedback with context as a continuous reward to understand
how their behaviors are being perceived by a user. We can
describe an interaction between a human and a robot as
a sequence of states (s) and actions taken by the human
(aH ) and robot (aR): ξ = ⟨{s0, a0H , a0R}, ..., {sT , aTH , aTR}⟩.
The state, s = [sE , sR, sH ]T , includes information about the
environment (sE), the robot (sR), and the internal state of the
human (sH ). We will explore using machine learning methods
to learn a reward function r that maps state-action tuples
(s, aR, aH) to a value in [0, 1] indicating how positively the
human perceived the robot action aR in the context of the
state s when the human took action aH . With fully observable
data, it is possible to learn the reward function r to build an
adaptable robot [26]. However, the internal state of the human
(sH) is not fully observable, so we will study how to learn
to assign meaning to observable implicit signals, which could
enable a robot to make predictions about the internal human
state (sH).

Another future direction is to extend our perception models
to interpret nonverbal human reactions in context during



situated human-robot interactions. We plan to conduct an in-
person study similar to our preliminary online exploratory
study, which will introduce additional complexities. For ex-
ample, participants may be distracted by the robot, compared
to playing against a hypothetical co-player online. A situated
environment could also introduce noise to our data. One
example is that smiling and laughing are common reactions
to unexpected robot behavior [27]. However, an embodied
robot introduces the possibility that participants would be more
expressive, providing additional data to analyze. The robot
could also take error recovery strategies during the interaction
that could be considered as additional context.

Our future work aims to improve situated human-robot
interactions by enabling robots to understand how their actions
are being perceived in real-time and allowing them to adapt
their behavior to the preferences of individual users. Addi-
tionally, this future work could help us to better understand
the actions that tend to prompt informative nonverbal human
reactions and how to incorporate those actions into a robot’s
behavior earlier in interactions.

V. CONCLUSION

We posit that including multiple levels of contextual infor-
mation into decision-making models will improve a robot’s
ability to understand the context of its interactions with hu-
mans. Researchers have thought of nonverbal human reactions
as contextual factors to reason about the capabilities of robots
(e.g., [2]). In our Space Invaders game, we similarly con-
sidered human nonverbal reactions as contextual clues about
what kind of helping behavior participants preferred from
an autonomous agent. We found that considering additional
contextual factors, such as information about the game state
and participant demographics and personality traits, improved
our ability to reason about nonverbal human feedback to
predict participant preferences across helping behaviors. Thus,
we encourage the Human-Robot Interaction community to
consider a robust collection of features as context. Considering
the context of context, or context2, should enable intelligent
robots to make fuller use of implicit human feedback gathered
during interactions.
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